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AN INDEX FORMULA FOR PERTURBED DIRAC OPERATORS ON

LIE MANIFOLDS

CATARINA CARVALHO AND VICTOR NISTOR

Abstract. We give an index formula for a class of Dirac operators coupled with un-
bounded potentials. More precisely, we study operators of the form P := /D + V , where
/D is a Dirac operators and V is an unbounded potential at infinity on a possibly non-
compact manifold M0. We assume that M0 is a Lie manifold with compactification
denoted M . Examples of Lie manifolds are provided by asymptotically Euclidean or
asymptotically hyperbolic spaces. The potential V is required to be such that V is in-
vertible outside a compact set K and V −1 extends to a smooth function on M rK that
vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact
Riemannian manifolds, we show that the computation of the index of P reduces to the
computation of the index of an elliptic pseudodifferential operator of order zero on M0

that is a multiplication operator at infinity. The index formula for P can then be ob-
tained from the results of [17]. The proof also yields similar index formulas for Dirac
operators coupled with bounded potentials that are invertible at infinity on asymptot-
ically commutative Lie manifolds, a class of manifolds that includes the scattering and
double-edge calculi.
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Introduction

Perturbed Dirac operators /D + V and operators ∆ + V of Schrödinger type on non-
compact manifolds play an important role in Quantum Mechanics, Conformal Field The-
ory, and in other areas. Partly for this reason, the index theory for this kind of operators
has been the subject of extensive research [5, 6, 12, 13, 14, 16, 23, 22, 21, 30, 42].
The purpose of this paper is to give an index formula for Dirac operators operators

coupled with unbounded potentials on even-dimensional Lie manifolds, a class of non-
compact manifolds M0 whose structure at infinity is controlled by a Lie algebra of vector
fields tangent to the boundary of a suitable (given) compactification M . We also find
an index formula for operators coupled with bounded potentials on a subclass of Lie
manifolds that are commutative at infinity (see Definition 2.6).
Lie manifolds, or manifolds with a Lie structure at infinity, were introduced and studied

in [3]. There is a natural algebra of differential operators associated to any such manifold
that contains all the classical geometric operators, such as the the Dirac operator [4].
One also defines a suitable algebra of pseudodifferential operators on any Lie manifold
[1], which happens to be related to an algebra of pseudodifferential operators on a dif-
ferentiable groupoid. For many of these algebras Ψ∗ of pseudodifferential operators on
manifolds with corners, the Fredholmness of P ∈Mn(Ψ

∗) can be characterised by the in-
vertibility of a symbol class that consists of two components: the principal symbol σ0(P )
and a symbol at the boundary σ∂(P ), also called the indicial operator associated to P .
Thus a pseudodifferential operator compatible with the Lie manifold structure is Fred-
holm if, and only if, the following two conditions are satisfied: the usual ellipticity and the
invertibility in the so-called indicial algebra at the boundary. The Fredholm conditions
relevant for our case are discussed in Propositions 2.4 and 2.8.
Let M0 be an even-dimensional Riemannian Lie manifold, with compactification to

a manifold with corners M and V be the Lie algebra of vector fields tangent to the
faces of M and defining the structure at infinity of M0 (for precise definitions see §.2.1).
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Let W be a Clifford module over M endowed with an admissible connection and let
/D : C∞(M ;W ) → C∞(M ;W ) be the associated generalized Dirac operator. Let us denote
by {xk} the boundary defining functions of the hyperfaces of M . We shall consider
operators of the form

(1) T ′ = /D + V := /D⊗̂1 + 1⊗̂V : C∞
c (M0;W ⊗ E) → C∞

c (M0;W ⊗E),

where the potential V ∈ End(E) is of the form V = f−1V0 with

(2) f := Πxakk , ak ∈ Z, ak > 0,

and V0 smooth on M and invertible at infinity (that is, on ∂M). We prove that T ′ is
essentially self-adjoint acting on L2(M0;W ⊗E). We shall denote by T the closure of T ′,
which is hence a self-adjoint operator (odd with respect to the natural spinor grading).
Let D(T ) denote the domain of T and D(T ) = D(T )+ ⊕D(T )− be its grading. We shall
still write T = /D + V , for simplicity. Let W ⊗̂E be the tensor product W ⊗ E endowed
with the usual grading.
Our main result, Theorem 3.13, is an index formula for the chiral operator

T+ : D(T )+ → L2(M0;W ⊗̂E)−

similar to the usual Atiyah-Singer index formula. The proof of this theorem is obtained
from a sequence of reductions, ultimately reducing our main result to the Atiyah-Singer
type theorem for operators that are asymptotically multiplication at infinity [17]. Let us
mention that our Theorem 3.13 is about as general as one can hope for such that a classical
index formula would still apply. For instance, if one replaces V with a bounded potential
V0, then one expects an index formula for /D + V0 to involve non-local invariants similar
to the eta invariant [8]. These non-local invariants would be associated to the faces at
infinity. Thus, if one wants to avoid non-local invariants and have an index formula on an
arbitrary Lie manifold just in terms of classical Chern characters, then one needs to require
V to be unbounded at infinity. (Note, however, that on asymptotically commutative Lie
manifolds, Definition 2.6, we do allow bounded potentials, and the calculation in this case
is an important ingredient in the proof; see below for more details.) Moreover, imposing
some structure at infinity also seems to be necessary and is usually done in practice. This
justifies why we consider Lie manifolds and not more general non-compact manifolds. See
[14] and [30] for some related approaches.
Most of the known results on the index of perturbed Dirac operators on non-compact

manifolds cited above make use of crucial properties of Dirac operators, namely relative
index theorems, trace formulas, or boundary conditions. In this paper, our index formula
for /D + V , with V bounded, is obtained from a general index theorem for a suitable
class of pseudodifferential operators and in fact most of our results hold in the setting of
pseudodifferential operators. For bounded potentials, however, we need to assume that
our Lie manifold is asymptotically commutative (or commutative at infinity), Definition
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2.6. A similar approach, in the bounded potentials case, is contained in [30], for odd-
dimensional manifolds, where Melrose’s index formula for (families of) scattering operators
is used to derive an index theorem for perturbed pseudodifferential operators, so-called
Callias-type operators, with bounded potentials. It is shown there that the index can
be computed from invariants at the corner S∗

∂MM . Note that the scattering structure
is just a particular case of the asymptotically commutative Lie structures we consider
here. (It is easily seen that Theorem 1.5 extends to the case of families, so our results can
also be formulated in this setting.) To get the result for unbounded potentials, we need
harder results from analysis, so we stick to differential operators, but this results holds
for arbitrary Lie manifolds.
Let us now review the sequence of reductions that lead to Theorem 3.13. At the same

time, we will review the contents of the paper (but in the inverse order of the sections).
The first step is to write

T = /D + V = f−1/2Qf−1/2, with Q := f 1/2/Df 1/2 + V0,

which we show in Section 3 to have the same index as T . We then consider a new Lie
manifold structure (M,W) on M0 using

(3) W = fV := (Πxakk )V,

It turns out that Q ∈ DiffW(M), which justifies the introduction of the new Lie mani-
fold structure (M,W). Moreover, Q itself is a Dirac operator coupled with the bounded
potential V0. What makes the index of such an operator computable is the fact that the
structural Lie algebra of vector fields W defining Q is commutative at infinity, or, to put
this in another way, the indicial algebra of W is commutative. A Lie manifold with this
property will be called asymptotically commutative. The analysis on the new Lie (M,W)
manifold turns out to be much easier. The index of the operator Q = /D + V0 associated
to (general) asymptotically commutative Lie manifolds with V0 bounded, but invertible
at infinity, is obtained in Theorem 3.7 using results of Section 2.
The analytical properties of general, not necessarily even-dimensional, asymptotically

commutative Lie manifolds (M,W) and the index of operators on these spaces are studied
in Section 2. We show that fully elliptic operators in Ψ∗(M ;W) can be deformed contin-
uously to operators in Ψ∗(M ;W) that are asymptotically multiplication on M0. We thus
obtain an index theorem for fully elliptic pseudodifferential operators on general asymp-
totically commutative Lie manifolds (that is, of the form (M,W) with W commutative
at infinity), Theorem 2.9, generalizing known results for the scattering and double edge
operators [33, 36]. Let us also mention that the case of asymptotically commutative Lie
manifolds includes the important case of asymptotically Euclidean manifolds. The index
formula for fully elliptic operators on asymptotically commutative Lie manifolds follows
then from the results of [17]. This reduction is achieved in Section 1. We remark that all
the results in Sections 1 and 2 do not assume that our manifolds are even-dimensional.
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It is a classical result that on a compact manifold M1, a pseudodifferential operator
P of order m defines a Fredholm operator Hs(M1) → Hs−m(M1) if, and only if, it is
elliptic. In other words, on a compact manifold, ellipticity is equivalent to Fredolmness.
By contrast, on non-compact manifolds, ellipticity is typically only a necessary, but not
sufficient condition to ensure Fredholmness; stronger conditions on an operator P are
required to obtain that P is Fredholm. For example, on an asymptotically commutative
Lie manifold, the Fredholm condition is still controlled by the invertibility of a function,
which this time is an extension of the principal symbol, and hence is defined on an
extension of the cosphere bundle. This phenomenon is studied in Section 1, where an
index theorem is proved for such operators by reducing to the case of operators that are
multiplication at infinity (which was studied in [17]). In particular, we obtain in that
section an index theorem for asymptotically multiplication operators.
We shall assume throughout most of this paper that M0 is a non-compact Lie manifold

with compactificationM , althought some of our results of the earlier sections may be true
for more general non-compact manifolds. For instance, the index theorem of [17] is valid
without any assumption on M0.

Acknowledgements. We thank Max Planck Institute for Mathematics for support while
parts of this work were being completed. We also thank Bernd Ammann and Ulrich Bunke
for useful discussions.

1. Asymptotically multiplication operators

In this section, we review some basic concepts and results to be used in what follows,
leading to the Atiyah-Singer index theorem in the setting of non-compact manifolds and
operators that are multiplication outside a compact set (or asymptotically so). Here,
we keep the manifolds quite general, while we consider a class of operators that inherits
naturally the properties of the compact manifold case. For simplicity, we assume that
M0 is endowed with a metric g and that, as a topological space, it is the interior of a
compact manifolds with corners M such that TM restricts to TM0 on M0. We let n be
the dimension onM0, which in this and the following section may be arbitrary, but in the
last section will be assumed to be even.

1.1. General calculus. We consider for now a smooth manifold M0 without boundary,
not necessarily compact, and a smooth vector bundle E over M0 that is trivial outside a
compact set in M0. We denote by d volg the volume form on M0 defined by the metric.
We also assume that E is endowed with a Hermitian metric, which is the trivial (product)
metric close to infinity. Typically, M0 will coincide with the interior of a given compact
manifold with corners M .
We first make a short review of main results of the theory of pseudodifferential operators

on M0 that we need in this paper, in the setting of operators that are multiplication by
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a smooth function outside a compact set. We follow closely the approach of [17] (see
however also [28] or [44] for general references).
Let us recall that a smooth function p : W × Rn −→ CN×N defines a symbol in the

class Sm(W ×Rn) of symbols of order m if, and only if, for any compact set K ⊂W and

multi-indices α, β, there exists CK,α,β > 0 such that |∂αx ∂
β
ξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β| ,

for all x ∈ K and ξ ∈ Rn. An operator P : C∞
c (M0;E) → C∞(M0;E) is said to be in the

class Ψm(M0;E) of pseudodifferential operators of order m on M0 if, for any coordinate
chart W of M0 trivializing E and for any h ∈ C∞

c (W ), hPh : C∞
c (W )N → C∞

c (W )N is a
matrix of pseudodifferential operators of order m on W , that is, hP (hu) = p(x,D)u, with

(4) hP (hu)(x) = p(x,D)u(x) := (2π)−n

∫

Rn

p(x, ξ)û(ξ)eix·ξdξ,

where û denotes the Fourier transform of u and p ∈ Sm(W × Rn).
We shall work only with classical symbols, that is, symbols that have asymptotic ex-

pansions p ∼
∑
pm−k with pm−k ∈ Sm−k(W×Rn) positively homogeneous of degree m−k

in ξ. Let us denote by π : T ∗M0 →M0 the cotangent bundle ofM0. The leading term pm
in the expansion of p(x, ξ) as a classical symbol defines a smooth section of the bundle
End(E) over the cotangent bundle T ∗M0, the principal symbol of P , which is a smooth
bundle homomorphism σm(P ) : π∗E → π∗E, positively homogeneous on the fibers of
T ∗M0. By choosing a metric on TM0, the class of principal symbols can be identified
with C∞(S∗M0; End(E)) where S

∗M0 is the unit sphere bundle of the cotangent bundle.
An operator P is said to be elliptic if σm(P ) is invertible on S∗M0. We shall regard the
cosphere bundle S∗M0 as the boundary of T ∗M0 using a radial compactification of each
fiber. It is in this sense that we shall often extend the principal symbol of an order zero
pseudodifferential operator to T ∗M0.
Under certain assumptions that will be satisfied in our setting, we have that if P ∈

Ψm(M0;E), then P0 := P (1 + P ∗P )−1/2 ∈ Ψ0(M0;E), with P
∗ the formal adjoint, and P

is Fredholm, respectively, elliptic, if, and only if, P0 is, with ind(P ) = ind(P0). Moreover,
σm(P ) is homotopic to σ0(P0), as sections of S∗M0 (the unit sphere bundle of T ∗M0).
Hence, for the purposes of index theory, we will mainly be concerned with operators of
order 0.
We start with considering the class of pseudodifferential operators that are multiplica-

tion outside a compact, defined as

(5) Ψ0
mult(M0;E) := {P = P1 + p, P1 ∈ Ψ0(M0;E) has a compactly supported

distribution kernel and p ∈ End(E) is bounded }.

(For m < 0, we consider Ψm
mult(M0;E) := Ψ0

mult(M0;E) ∩Ψm(M0;E)). We have that any
operator in Ψ0

mult(M0;E) is properly supported and that Ψ0
mult(M0;E) is a ∗-algebra (see

[17] for details). Moreover, denoting by S0
mult(T

∗M0;E) the set of bounded symbols in
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S0(T ∗M0;E) that are constant on the fibres of T ∗M0 →M0 outside a compact of M0, we
have that there is a well-defined symbol map

(6) σ0 : Ψ
0
mult(M0;E) → S0

mult(T
∗M0;E)/S

−1
mult(T

∗M0;E),

which is a surjective ∗–homomorphism with ker(σ0) = Ψ−1
mult(M0;E), as it is the case

if M0 is compact. Moreover, we have that P ∈ Ψ0
mult(M0;E) is always bounded as an

operator on L2(M0;E), and that Ψ−1
mult(M0;E) consists of compact operators, again as in

the classical case of compact manifolds.
We endow the class of symbols S0

mult(T
∗M0;E) with the sup-norm, as a section of

End(E) over T ∗M0. Note that S
0
mult(T

∗M0;E) can be identified with the class of bounded
sections in C∞(S∗M0; End(E)) that are constant on the fibers of S∗M0 outside a compact
K ⊂ M0, and this is consistent with regarding S∗M0 as the boundary of (the radial
fibrewise compactification of) T ∗M0. (Recall that E is trivialized outside a compact set,
so “constant in a neighborhood of infinity” does indeed make sense.)
The class Ca(S

∗M0;E) of asymptotically multiplication symbols is defined as those func-
tions p = p(x, ξ) ∈ C(S∗M0; End(E)) such that p(x, ξ) is bounded in the sup-norm and,
for all ǫ > 0, there is a compact Kǫ ⊂ M0 such that, for all x /∈ Kǫ,

(7) sup
ξ1,ξ2∈S∗M0

‖p(x, ξ1)− p(x, ξ2)‖End(Ex) < ǫ.

Roughly speaking, the elements of Ca(S
∗M0;E) are continuous sections of End(E) over

S∗M0 that are bounded and asymptotically independent of ξ on the fibers of S∗M0. It
is easily checked that it is a C∗-subalgebra of Cb(S

∗M0; End(E)), the class of continuous,
bounded sections of End(E).
We now define the class of asymptotically multiplication pseudodifferential operators as

(8) Ψ0
a(M0;E) := Ψ0

mult(M0;E) ⊂ B(L2(M0;E)),

that is, the closure of Ψ0
a(M0;E) in the topology of bounded operators on L2(M0;E).

The point of the following lemma is that, once we consider completions, we will need
to replace operators that are multiplication at infinity with asymptotically multiplication
operators.

Lemma 1.1. The principal symbol defines a natural map Ψ0
mult(M0;E) → Ca(S

∗M0;E),
which extends by continuity to a surjective map Ψ0

a(M0;E) → Ca(S
∗M0;E).

Proof. We show that Ca(S
∗M0;E) coincides with the closure of

(9) Ξ := { p ∈ C∞
b (S∗M0; End(E)), there exists K ⊂M0 compact

such that p(x, ξ) is independent of ξ if x /∈ K },

and the result then follows as in the compact case. It is readily checked that any p in the
closure of (9) is asymptotically multiplication. For the converse, let p ∈ Ca(S

∗M0; End(E))
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and take p̃ ∈ C∞
b (S∗M0; End(E)) such that ‖p̃− p‖sup < ǫ. Let K ⊂M0 be compact such

that ‖p(x, ξ1)− p(x, ξ2)‖End(Ex) < ǫ, for all x /∈ K, ξ1, ξ2 ∈ S∗M0, and let φ ∈ C∞
c (S∗M0)

be such that supp φ ⊂M0 −K, 0 ≤ φ ≤ 1, and φ(x, ξ) = 1, for x /∈ K ′, with K ′ compact
such that K ⊂ int(K ′). Define

q(x, ξ) := (1− φ(x, ξ)) p̃(x, ξ) + φ(x, ξ) p̃(s(x)),

where s is a fixed smooth section of S∗M0 (which exists since every connected non-compact
manifold has a nowhere vanishing vector field). Then q(x, ξ) ∈ C∞

b (S∗M0; End(E)) and
for x /∈ K ′, q(x, ξ) = p̃(s(x)) is independent of ξ. Moreover,

‖q − p‖sup ≤ sup
x∈K ′

ξ∈S∗M0

‖p̃(x, ξ)− p(x, ξ)‖End(Ex) + sup
x/∈K,

ξ∈S∗M0

‖p̃(s(x))− p(x, ξ)‖End(Ex)

≤ 2‖p̃− p‖sup + sup
x/∈K,

ξ∈S∗M0

‖p(s(x))− p(x, ξ)‖End(Ex) ≤ 3ǫ.

Hence, p lies in the closure of Ξ defined in Equation (9), and that concludes our proof. �

The following result can be proved much as in the compact case.

Proposition 1.2. The principal symbol map (6) is continuous and the following sequence
of C∗-algebras is exact

(10) 0 −−−→ K(M0;E) −−−→ Ψ0
a(M0;E)

σ0−−−→ Ca(S
∗M0;E) −−−→ 0.

where now σ0 : Ψ0
a(M0;E) → Ca(S

∗M0;E) denotes the extension by continuity of the
classical principal symbol map σ0 : Ψ

0
mult(M0;E) → Ca(S

∗M0;E).

Proof. The exactness at Ca(S
∗M0;E) follows from Lemma 1.1. Using a partition of unity

and the fact that our result is true in the compact case, we see that Ψ−1
mult(M0;E) ⊂ K

as a dense subset. This proves the exactness at K(M0;E) and the fact that K(M0;E) is
contained in the kernel of σ0.
As in the classical case of compact manifolds, the difficult case is to prove that if an

operator T ∈ Ψ0
a(M0;E) is in the kernel of σ0, then it is compact. Let then

Tn ∈ Ψ0
mult(M0;E), Tn → T and σ0(Tn) → 0.

Then we can replace the sequence Tn with a sequence of operators that are zero in a
neighborhood of infinity. Also, let ψ ∈ C∞

c (M0) have the support in a local coordinate
chart. Then ψTnψ → ψTψ and σ0(ψTnψ) → 0. Using the case of a compact manifold, we
see that ψTψ is a compact operator. From this we infer that ψ1Tψ2 is also compact for any
compactly functions ψ1 and ψ2. (One way to prove this is to consider first the case when
ψ1 and ψ2 have disjoint supports). Let 0 ≤ . . . ≤ ψk ≤ ψk+1 ≤ . . . ≤ 1 be an increasing
sequence of compactly functions such that ψn(x) → 1 for all x. (We are assuming here
that M0 is σ-compact, which is always the case if M0 has a compactification.)
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We claim that ψkTψk → T . Since ψkTψk is compact for any k, it will follow that T
is also compact. To prove our claim, let ǫ > 0 and choose n such that ‖T − Tn‖ < ǫ/3.
Then we can find k0 such that ‖ψkTnψk − Tn‖ ≤ ǫ/3 for k ≥ k0 since Tn is assumed to be
zero outside a compact set. Then

‖T − ψkTψk‖ ≤ ‖T − Tn‖+ ‖Tn − ψkTnψk‖+ ‖ψk(Tn − T )ψk‖ ≤ ǫ

for k ≥ k0. This completes our proof. �

It follows from Proposition 1.2 that P ∈ Ψ0
a(M0;E) is a Fredholm operator if, and only

if, its full symbol is invertible in Ca(S
∗M0;E) or, equivalently, in Cb(S

∗M0;E). See also
[24] for a discussion of Fredholm operators on non-compact manifolds.

1.2. The Atiyah-Singer index theorem. We now review the Atiyah-Singer index for-
mula, applied to asymptotically multiplication operators. (See for instance [9, 35] for the
details on the constructions below).
First, we define operators acting between sections of two different vector bundles.

Let E, F be vector bundles over M0, with E ∼= F outside a compact. We define
Ψ0

mult(M0;E, F ) as the subclass of Ψ0
mult(M0;E ⊕ F ) of those operators that induce P :

C∞
c (M0;E) → C∞(M0;F ). We have so also S0

mult(T
∗M0;E, F ) ⊂ S0

mult(T
∗M0;E⊕F ) and

all the results above hold, except that if P ∈ Ψ0
mult(M0;E, F ) then P

∗ ∈ Ψ0
mult(M0;F,E),

so we leave the setting of C∗-algebras. In any case, an analogue of the exact sequence
given in Proposition 1.2 holds.
We now associate a K-theory class to an elliptic Fredholm operator in Ψ0

a(M0;E, F ).

Lemma 1.3. For any elliptic, bounded Q ∈ Ψ0
mult(M0;E, F ) such that q := σ0(Q), here

is a natural class [σ0(Q)] := [π∗E, π∗F, q] in the compactly supported K-theory of T ∗M0

obtained by extending q to an invertible map outside a compact set of TM0 that is constant
along the fibers of TM0 → M0 outside a compact set. This K-theory class is such that
the Fredholm index of Q depends only on [σ0(Q)].

Proof. In order to associate a K-theory class to a Fredholm operator in Ψ0
a(M0;E, F ),

we start with noting that if Q ∈ Ψ0
mult(M0;E, F ) is such that q := σ0(Q) is invertible,

then q defines an isomorphism outside a compact subset of T ∗M0 by homogeneity and
the fact that it is constant on the fibres outside a compact in M0. Hence, regarding
q(x, ξ) as a bundle map π∗E → π∗F , π : T ∗M0 → M0, we obtain the desired definiton of
[σ0(Q)] := [π∗E, π∗F, q] as in [7, 29]. The dependence of the index only on [σ0(Q)] follows
as in the classical case by noticing that Q is Fredholm as long as the principal symbol is
invertible as in [17]. �

Given now a Fredholm operator P ∈ Ψ0
a(M0;E, F ) with invertible symbol σ0(P ) ∈

Ca(S
∗M0;E, F ), by Proposition 1.2, we can take q ∈ S0

mult(T
∗M0;E, F ) sufficiently close



10 C. CARVALHO AND V. NISTOR

to σ0(P ) such that tσ0(P )+(1−t)q, t ∈ [0, 1], is an homotopy through invertible symbols.
We define the symbol class of P as

(11) [σ0(P )] := [π∗E, π∗F, q] ∈ K0(T ∗M0).

This class is independent of q. If we take q = σ0(Q), with Q ∈ Ψ0
mult(M0;E, F ), we have

ind(P ) = ind(Q). Moreover, if two Fredholm operators have the same symbol class, then
their indices coincide, and, in fact there is a well-defined (analytic) index map

(12) ind : K0(TM0) → Z, [σ0(P )] 7→ ind(P ),

where P ∈ Ψ0
a(M0;E, F ) and we use the metric to identify canonically T ∗M0 with TM0.

We summarize the above discussion in the following lemma extending Lemma 1.3.

Lemma 1.4. For any elliptic, bounded Q ∈ Ψ0
a(M0;E, F ) such that q := σ0(Q), there

is a natural class [σ0(Q)] := [π∗E, π∗F, q] in the compactly supported K-theory of T ∗M0

obtained by extending q to an invertible map outside a compact set of TM0 that is asymp-
totically constant along the fibers of TM0 → M0. This K-theory class is such that the
Fredholm index of Q depends only on [σ0(Q)].

For a manifold X , we let H∗(X), respectively H∗
c (X), denote the cohomology, respec-

tively the compactly supported cohomology, of X . Recall that throughout this section,
we assume that M0 is the interior of a compact manifold with corners M . Let TM be
the radial compactification of the tangent bundle to M . Then the pair (TM, ∂TM) is
homeomorphic to the similar pair associated to a manifold with boundary. Hence the
(even) Chern character yields a map

ch0 : K
0(TM0) → H2∗

c (TM0) = H2∗(TM, ∂TM ).

(We will also consider later on the odd Chern character ch1 defined on K1.) Let also
Td(TCM) ∈ H∗(M) denote the Todd class of the complexified tangent bundle TM ⊗
C. Note that since TM is oriented, there is a well-defined fundamental class [TM0] ∈
H2n(TM, ∂TM) (see for instance [35] for details on these constructions).
The following result is an immediate extension of a result in [17] from operators that

are multiplication outside a compact to operators that are only asymptotically so. Let
π : TM → M denote the natural projection. We have ch0[σ0(P )] ∈ H2∗(TM, ∂TM) and
π∗Td(TCM) ∈ H2∗(TM) so their product is in H2∗(TM, ∂TM ) = H2∗

c (TM0).

Theorem 1.5. Let P ∈ Ψ0
a(M0;E, F ) be such that σ0(P ) is invertible in Ca(S

∗M0;E, F ).
Then P is Fredholm and

ind(P ) = (−1)n ch0[σ0(P )]π
∗Td(TCM)[TM0],

where [σ0(P )] is defined using Lemma 1.4.
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Proof. The fact that P is Fredholm follows from Proposition 1.2. The rest of the proof
follows from the discussion before the statement of this theorem. Indeed, let P ∈
Ψ0

a(M0;E, F ) be elliptic. Then we can find P0 ∈ Ψ0
mult(M0;E, F ) that is close enough

to P such that the straight line joining P and P0 consists of invertible operators. Both
the left hand side and the right hand side of our index formula are homotopy invariant.
For P0 they are equal by [17]. For P , they will be therefore equal as well, by homotopy
invariance. �

1.3. Comparison spaces. In this subsection, we extend by deformation the index for-
mula of Theorem 1.5 to certain pseudodifferential operators on noncompact manifolds that
extend to the compactification M of M0 in a suitable sense. More precisely, we require
the principal symbols of our operators to extend to a so-called “comparison space” and
there is an invertible complete symbol at the boundary. We thus generalize the approach
in [23, 36], using homotopy to asymptotically multiplication symbols.
Recall that M is a compactification of M0 to a manifold with corners. In this section,

we fix a vector bundle A over M such that A|M0

∼= TM0 (later, when we consider Lie
structures, such an A will be naturally associated to M0.) Denote by A the fiber-wise
radial compactification of A, so A is a manifold with corners that fibers overM with fibers
closed balls of dimension n. We identify A with A∗ using a fixed metric. Let (S∗A)∂M be
the restriction of the cosphere bundle S∗A to the boundary ∂M of M . Define

(13) Ω := ∂(A) = (S∗A) ∪A|∂M

such that

C(Ω) = {(f, g) ∈ C(S∗A)⊕ C(A|∂M) : f |(S∗A)∂M = g(S∗A)|∂M}.

The space Ω will play an important role in what follows. It is closely related to a similar
space introduced by Cordes and his colaborators in his work on Gelfand theory for non-
compact manifolds [19, 18].
Let ΨA(M0;E) ⊂ Ψ0(M0;E) be a ∗-algebra of order 0, bounded, pseudodifferential

operators. We say that Ω is a comparison space for ΨA(M0;E) if there is a surjective
homomorphism

(14) σfull : ΨA(M0;E) → C(Ω)

such that σfull(P )|S∗M0
= σ0(P ), with kernel included in the algebra of compact operators.

We call σfull a full symbol and write σfull = (σ0, σ∂), where

σ∂ : ΨA(M0;E) → C(A|∂M)

is the boundary symbol morphism. An operator with invertible full symbol is called fully
elliptic. We shall give an index formula for fully elliptic operators in this setting, reducing
to asymptotically multiplication operators.
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We see first that any function in C(Ω) can be homotoped over the interior to an asymp-
totically multiplication symbol. Since the fibres of A are isomorphic to the n-dimensional
half sphere Sn

+ and hence contractible, we have that Ω is homotopy equivalent to the

space Ω̃ obtained from the cosphere bundle S∗A by collapsing the fibers above points
of the boundary. More precisely, Ω̃ := (S∗A)/ ∼, with (x, ξ) ∼ (x, ξ′), for x ∈ ∂M ,
ξ, ξ′ ∈ S∗Ax. Since

C(Ω̃) ∼= {f ∈ C(Ω) : f constant on fibers over ∂M}
∼= {f ∈ C(S∗A) : f constant on fibers over ∂M},

we conclude that every f ∈ C(Ω) is canonically homotopic to some f̃ ∈ C(Ω) constant on

the fibres of A|∂M → ∂M (this is achieved by a homotopy equivalence between Ω and Ω̃).

Moreover, if f is invertible, the canonical homotopy between f and f̃ is through invertible
functions. We now have the following:

Lemma 1.6. If f ∈ C(Ω, E) is constant on fibers of A|∂M → ∂M , then f0 := f |S∗M0
∈

Ca(S
∗M0, E). In particular, let f ∈ C(Ω, E), then f is homotopic to f̃ ∈ C(Ω̃, E) ⊂

C(Ω, E) and hence it satisfies f0 := f̃ |S∗M0
∈ Ca(S

∗M0, E).

Proof. We consider only the scalar case. Let p ∈ C(∂M) be such that f(S∗A)∂M = p. It
suffices to show that, given ǫ > 0, there is a neighborhood U of ∂M in M such that for
y ∈ M0 ∩ U , ξ, ξ

′ ∈ S∗
yM0,

(15) ‖f0(y, ξ)− f0(y, ξ
′)‖ < ǫ

so that (7) follows withK =M\U . We can do this locally, so assume Ux is a neighborhood
of x ∈ ∂M such that π−1(Ux) ∼= Ux × Sn−1, π : S∗A→ M . Let

Vx := {(y, ξ) ∈ Ux × Sn−1 : ‖f(y, ξ)− p(x)‖ < ǫ/2}.

By continuity of f in S∗A, we have that Vx is open in Ux × Sn−1. Moreover, since
f(y, ξ) = p(y), y ∈ ∂M , it contains Wx × Sn−1 for some Wx ⊂ ∂M open. Hence, Vx
can be taken as Ũx × Sn−1, for some open neighborhood Ũx of Wx in M so that (15)

holds if y ∈ Ũx. The last statement follows from the fact that Ω and Ω̃ are homotopy
equivalent. �

Let us notice that for f ∈ C(Ω̃, E), the restriction f |S∗M0
completely determines f since

S∗M0 is dense in Ω̃. Let now P ∈ Ψ0
A(M ;E) have invertible symbol

φ = (σ0(P ), σ∂(P )) ∈ C(Ω, E).

(In the terminology introduced earlier, P is fully elliptic.) From the previous lemma,

there is an invertible φ̃ ∈ C(Ω̃, E) ⊂ C(Ω, E) homotopic through invertibles to φ, with

σ̃ := φ̃|S∗M0
∈ Ca(S

∗M0, E) and σ := σ0(P ) and σ̃ are homotopic (over M0). If we let
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σ̃ = σ0(P̃ ), for some P̃ ∈ Ψ0
a(M0;E)∩Ψ0

A(M ;E), then P̃ is Fredholm, since σ̃ is invertible.
Moreover, from the surjectivity of the complete symbol map (14), there is a continuous

family Pt ∈ Ψ0
A(M ;E), t ∈ [0, 1], lifting the homotopy between φ and φ̃. Hence P0 = P

and P1 = P̃ and ind(P ) = ind(P̃ ).

We conclude also that any fully elliptic operator P ∈ Ψ0
A(M ;E, F ) has associated a

well-defined K-theory class [σ̃full(P )] extending by homotopy the definition in Equation

(11) as follows. We know that P is homotopic to some P̃ ∈ Ψ0
a(M0;E) through Fredholm

operators in Ψ0
A(M0;E) and [σ̃full(P )] := [σ0(P̃ )], so that

(16) [σ̃full(P )] := [σ0(P̃ )] = [π∗E, π∗F, p̃] ∈ K0(TM0),

where we assume p̃ is an extension of the principal symbol of P̃ to a function that is
multiplication at infinity and homotopic to σ0(P ) over the interior. In particular.

ind(P ) = ind(P̃ ) = ind([σ0(P̃ )]) = ind([σ̃full(P )]).

Consider now, for P ∈ Ψ0
A(M ;E, F ) fully elliptic,

(17) [σfull(P )] := [(σ0(P ), σ∂(P ))] ∈ K1(C(Ω)) ∼= K1(Ω)

where σ∂(P ) ∈ C(A∂M) and σ0(P ) ∈ C(S∗A) denote the boundary and principal symbol,
respectively. Let us consider the connecting map ∂ : K1(Ω) → K0(TM0) in the long
exact sequence of the pair (A, ∂A) = (A,Ω). We summarize the above discussion to the
following generalization of Lemma 1.4.

Lemma 1.7. For any fully elliptic P ∈ Ψ0
A(M ;E, F ) there is a natural class

[σ̃full(P )] := [π∗E, π∗F, p]

in the compactly supported K-theory of T ∗M0 obtained by extending σfull(P ) to a contin-
uous endomorphism p invertible outside a compact set of TM0. This K-theory class is
such that the Fredholm index of P depends only on [σ̃full(P )] and

[σ̃full(P )] = ∂[(σ0(P ), σ∂(P ))] = ∂[σfull(P )].

Let us also notice that Ω is homotopically equivalent to the boundary of an oriented
smooth manifold with boundary, and hence it has a well defined fundamental class [Ω] ∈
H2n−1(Ω). If [A] denotes the fundamental class of A in H2n(A,Ω), then [Ω] = ∂[A].
Using the compatibility of the boundary maps in K-theory and cohomology, that is, the
fact that the Chern character is a natural transformation of cohomology theories (see
[40] for an extension of this result to non-commutative algebras), we obtain the following
result as a consequence of the Atiyah-Singer index formula extended to operators that are
asymptotically multiplication operators (Theorem 1.5).
As before, let Td(TCM) denote the Todd class of the complexified tangent bundle of

M , and π : T ∗M →M . Also, we denote by πΩ : Ω →M the natural projection.
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Theorem 1.8. Let Ω be a comparison space for Ψ0
A(M ;E, F ) and P ∈ Ψ0

A(M ;E, F )
be fully elliptic operator (that is, an elliptic operator with σ∂(P ) invertible in C(A|∂M)).
Then P is Fredholm and

ind(P ) = (−1)n ch0[σ̃full(P )]π
∗Td(TCM)[TM0] = (−1)n ch1[σfull(P )]π

∗
ΩTd(TCM)[Ω],

where [σ̃full(P )] is defined using Lemma 1.7.

Proof. Again, the proof of the first equality follows from the discussion before the state-

ment of the theorem. Indeed, let us choose a homotopy between P and P̃ ∈ Ψ0
a(M0;E, F )

through Fredholm operators Ψ0
A(M ;E, F ). Both the left hand side and the right hand

side(s) of the index formula of this theorem are homotopy invariant. For P̃ they are equal
in view of Theorem 1.5, by homotopy invariance, they will be equal also for P . To prove
the last equality, we just use the fact that the Chern character is compatible with the
boundary maps in K-theory and cohomology. (A proof of a generalization of this result
to non-commutative algebras can be found in [40].) �

2. Index formula on asymptotically commutative Lie manifolds

From now on, we endow M0 with the structure of a Lie manifold with compactification
M and structural Lie algebra of vector fields V (see below for the definitions). There
is associated to (M,V) a well-behaved pseudodifferential calculus and, for operators in
this calculus, Fredholm criteria follow from the pseudodifferential calculus of operators on
groupoids [1, 31].
We show that if we introduce the additional assumptions on the structural Lie algebra

V that it be asymptotically commutative, then there will exist a (commutative) complete
symbol and hence we can apply the results in the previous section. Recall that in this
section n may be arbitrary (in the following section will be assumed to be even).

2.1. Operators on Lie manifolds. In this section, M will denote a compact manifold
with corners and M0 = int(M), as before. Also, let VM denote the Lie algebra of vector
fields that are tangent to all faces of M . We always assume that each hyperface H ⊂ M
is an embedded submanifold of M and hence that it has a defining function xH (recall
that this means that xH is smooth on M , xH ≥ 0, H = {xH = 0}, and dxH 6= 0 on H).
We recall the main definitions of [3, 1]. We say that a Lie subalgebra V ⊂ VM is a

structural Lie algebra of vector fields if it is a Lie algebra with respect to the Lie bracket
and it is also a finitely generated, projective, C∞(M)-module. By the Serre-Swan theorem,
we have that there exists a vector bundle A such that V ∼= Γ(A). Moreover, there is a
vector bundle morphism ρ : A → TM , called anchor map, which induces the inclusion
map ρ : V = Γ(A) → Γ(TM). It thus follows that A with the given structure is naturally
a Lie algebroid.



AN INDEX FORMULA FOR PERTURBED DIRAC OPERATORS ON LIE MANIFOLDS 15

Definition 2.1. A Lie manifold M0 is given by a pair (M,V) where M0 = int(M) and V
is structural Lie algebra of vector fields such that ρ|M0

: A|M0
→ TM0 is an isomorphism.

A metric on M0 that is obtained from a metric on A by restriction to A|M0

∼= TM0 will
be called a compatible metric on M0. Any two such metrics are Lipschitz equivalent. We
fix one of these metrics on M0 in what follows.
To a Lie manifold (M,V) we associate the algebra DiffV(M0) of V-differential operators

onM0, defined as the enveloping algebra of V (generated by V and C∞(M)). It was shown
in [3] that DiffV(M0) contains all geometric operators on M0 associated to a compatible
metric, such as the Dirac and generalized Dirac operators. (This property of DiffV(M0)
will be used in Section 3.) One defines differential operators acting between sections of
vector bundles E, F over M as

DiffV(M0;E, F ) := eFMN(DiffV(M0))eE,

where eE , eF are projections onto E, F ⊂ M × CN . In [1], a class of pseudodifferen-
tial operators associated to a given Lie structure at infinity is defined by a process of
microlocalizing DiffV(M0;E, F ). We outline this construction below.
Recall that we first define the class Sm(A∗) ⊂ C∞(A∗) as functions satisfying the

usual symbol estimates on coordinate patches trivializing A∗, which are moreover classi-
cal symbols. By inverse Fourier transform on the fibres, each symbol a ∈ Sm(A∗) defines
a distribution F−1

fib(a) on A that is conormal to M . By restriction, F−1
fib(a) defines a

distribution on TM0 conormal to M0. We fix a metric on A which then defines a compat-
ible metric. We denote by exp the (geodesic) exponential map associated to this metric
(yielding expx : TxM0 → M0 for each x ∈ M0). Now for some r > 0, let

Φ : (TM0)r → Vr ⊂M0 ×M0, v ∈ (TxM0)r 7→ (x, expx(−v))

be the diffeomorphism given by the Riemann-Weyl fibration, where (TM0)r are the vectors
with norm less than r, Vr is an open neighborhood of the diagonal M0

∼= ∆M0
⊂ M2

0 ,
and r > 0 is less than the injectivity radius of M0, which is known to be positive. Fix a
smooth function χ, with suppχ ∈ Ar and χ = 1 on a neighborhhod of the zero section of
A, which is identified with M . For a ∈ Sm(A∗), define a distribution on M2

0 , conormal to
M0 by

(18) qχ(a) := Φ∗(χF
−1
fib(a)).

Let aχ(D) denote the operator on M0 with Schwartz kernel qχ. Then aχ(D) is a properly
supported (if r <∞) pseudodifferential operator on M0.
For each X ∈ V = Γ(A), let ψX : C∞

c (M) → C∞
c (M) be the operator induced by the

global flow ΨX : R×M →M by evaluation at 1.

Definition 2.2. The space Ψm
V (M0) of pseudodifferential operators generated by the Lie

structure at infinity (M,V) is the linear space of operators C∞
c (M0) → C∞

c (M0) generated
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by aχ(D), with a ∈ Sm(A∗) and bχ(D)ψX1
· · ·ψXk

, with b ∈ S−∞(A∗) and X1, · · · , Xk ∈
V = Γ(A).

We define similarly the space Ψm
V (M0;E, F ) of pseudodifferential operators acting be-

tween sections of vector bundles E, F over M .
As for the usual algebras of pseudodifferential operators, we have the following basic

property of the principal symbol (Proposition 2.6 [1]): the principal symbol establishes
isomorphisms

σm : Ψm
V (M0)/Ψ

m−1
V (M0) → Sm(A∗)/Sm−1(A∗) ∼= C∞(S∗A).

We note that the set of all aχ(D), with a ∈ S∞(A∗) is not closed under composition of
operators, that is why we consider extra operators in Ψ−∞(M0). To show that Ψm

V (M0)
is indeed closed under composition, results from the following section are needed.

2.2. Operators on groupoids. In order to obtain algebraic properties and, in particular,
Fredholm criteria, an important result is that Ψm

V (M0) can be recovered from an algebra
of pseudodifferential operators on a suitable groupoid integrating A. We review the main
definitions of the theory of pseudodifferential operators on groupoids, for the benefit of
the reader (see [32, 39]).
For a Lie groupoid G with space of units given by a manifold with corners M , with

d, r : G → M the domain and range maps, P = (Px) ∈ Ψm(G) is defined as a smooth
family of pseudodifferential operators on the fibres Gx := d−1(x), x ∈ M , which is right-
invariant, that is, UgPd(g) = Pr(g)Ug where Ug : C

∞(Gd(g) → C∞(Gr(g)), Ug(f)g
′ := f(g′g).

Recall that the definition of a Lie groupoid requires the sets Gx := d−1(x) to be smooth
manifolds (no corners). We also assume that this family is uniformly supported, in that

supp(P ) = ∪xµ(supp(Kx)) ⊂ G

is compact, where µ(g, h) = gh−1 andKx denotes the Schwartz kernel of Px (a distribution
on Gx × Gx). In this case, each Px is properly supported, so that the composition gh−1 is
well defined. Moreover, P acts on C∞(G). Let T dG = ker d∗ = ∪TxGx be the d-vertical
tangent bundle and denote by A(G) :=

(
T dG

)
M

the Lie algebroid of G and S∗A(G) :=
(A(G)∗\0)/R∗

+ its cosphere bundle. Let us fix a metric on A. This choice defines a principal
symbol map σm : Ψm(G) → C∞

c (S∗A(G)), which is surjective, with kernel Ψm−1(G). One
can define similarly operators acting between sections of vector bundles: if E is a vector
bundle over the space of units M , then Ψm(G, r∗E) is well-defined as above.
For each x ∈ M , we consider the regular representation πx of Ψ∞(G) on C∞(Gx) de-

fined as πx(P ) := Px. When restricted to order zero operators, this is a bounded ∗-
representation, for all x. For P ∈ Ψ0(G), let

(19) ‖P‖r := sup
x∈M

‖πx(P )‖
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be the reduced C∗-norm. We shall also need the full C∗-norm defined as

‖P‖ := sup
ρ

‖ρ(P )‖,

where ρ ranges through bounded ∗-representation of Ψ0(G) such that for T ∈ Ψ−∞(G),
ρ(T ) ≤ ‖T‖1, with ‖ ‖1 defined by integrating the Schwartz kernels over the fibres (see
[32] for the precise definitions). Endowing Ψ0(G) with the full norm ‖ ‖, we have that the
principal symbol extends to a bounded ∗-homomorphism

(20) σ0 : Ψ0(G) → C0(S
∗A(G)),

surjective, with kernel C∗(G) := Ψ−∞(G)). (A similar result holds for the reduced norm.)
If Y ⊂M is an invariant subset (that is, d−1(Y ) = r−1(Y )), then GY := d−1(Y ) is also

a continuous family groupoid, with units Y and there is a well-defined restriction map
RY : Ψm(G;E) → Ψm(GY ;EY ). In this case, Lemma 3 in [32] gives that the following
sequence is exact:

(21) 0 −→ C∗(GM\Y ) −→ Ψ0(G)
(σ0,RY )

−−−−−→ C(S∗A(G))×C(S∗A(G)Y ) Ψ0(GY ) −→ 0,

where the fibered product Ψ0(GY )×C0(S∗A(G)Y )C0(S
∗A(G)) is defined as the algebra of pairs

(Q, f) ∈ Ψ0(GY )× C0(S
∗A(G)) such that σ0(Q) = f|S∗A(G)Y .

IfM0 = int(M) is an invariant subset, one can define the so-called vector representation
πM0

, which associates to P ∈ Ψ0(G) a pseudodifferential operator πM0
(P ) : C∞

c (M0) →
C∞
c (M0) by the formula πM0

(P )u = u0, with P (u ◦ r) = u0 ◦ r [34]. Recall that a Lie
groupoid is called d-connected if all the sets Gx := d−1(x) are connected. If A → M is a
Lie algebroid on M , we say that G integrates A if A(G) = A. We shall need Theorem 3.3
from [1], which gives that

Theorem 2.3. Let (M,V) be a Lie manifold with Lie algebroid A and G be a d-connected
groupoid over M integrating A. Then Ψm

V (M0) ∼= πM0
(Ψm(G)).

The right-hand-side is well defined since, as we shall see next, one can always assume
thatM0 is an invariant subset of such G. In particular, it follows that the classes Ψm

V (M0)
define a filtered algebra on Ψ∞

V (M0).
The problem of integrating Lie algebroids was solved in [20], though for our purposes,

the results in [38] suffice. Namely, M0 and ∂M form an A-invariant stratification ofM , so
it follows from the glueing theorem in [38] that it suffices to integrate along these strata.
Since the anchor map ρ is a diffeomorphism over the interior, we can take the d-connected
groupoid G integrating A to coincide with the pair groupoid over the interior, meaning
that GM0

∼= M0 ×M0, in case M0 is connected. (The general case of non-connected M0

can be reduced to the connected case by taking the compactification of each connected
component.) It then follows from [38] that, if G∂M is a groupoid integrating A∂M , then

(22) G = GM0
⊔ G∂M

∼= (M0 ×M0) ∪ G∂M ,
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has the structure of a differentiable groupoid with Lie algebroid A. We see that M0 is
indeed an invariant subset, and moreover, since GM0

is the pair groupoid, one has that
C∗(GM0

) ∼= K(L2(M0)), the isomorphism being induced either by the vector representation
πM0

or by πx, x ∈ M0, noting that these representations are equivalent through the
isometry r : Gx →M0. In particular, the vector representation πM0

is bounded. Fredholm
criteria now follow from the exact sequence (21) as in [32] (Theorem 4).
From now on we shall assume that G is a d-connected Lie groupoid integrating the Lie

algebroid A→ M defined by a Lie manifold (M,V). We shall also assume that the vector

representation πM0
is injective on Ψ0(G). In particular, Ψ0(G) ∼= Ψ0

V(M0). Moreover,

since C∗(G) ⊂ Ψ0(G) and πM0
factors through the reduced C∗-algebra of G, so that

πM0
(C∗

r (G)) = πM0
(C∗(G)), we hence obtain that G is amenable, in that the reduced and

full norms coincide.
We shall use the isomorphism above to carry to Ψm

V (M0) all concepts defined for Ψm(G).
At the level of symbols, we have σm(P ) = σm(πM0

(Q)) = σm(Q) on M0, for any P ∈
Ψm

V (M0). We shall also need the map of restriction to the boundary for operators on
(M,V)

σ∂ : Ψ0
V(M0) → Ψ0(G∂M ), P 7→ R∂(Q) = Q|∂M ,

where πM0
(Q) = P and R∂ : Ψ0(G) → Ψ0(G∂M) is restriction to the boundary.

Proposition 2.4. Let (M,V) be a Lie manifold with Lie algebroid A and G be a d-
connected groupoid as in (22) satisfying A(G) ≃ A. Assume that the representation πM0

is injective on Ψ0(G), as above. Then

Ψ0(G)/K ∼= C(S∗A)×C(S∗A∂M ) Ψ0(G∂M )

:= {(a,Q) ∈ C0(S
∗A)×Ψ0(G∂M), a|∂M = σ0(Q) ∈ C(S∗A∂M) }

and P ∈ Ψ0
V(M0) is Fredholm if, and only if, it is elliptic and σ∂(P ) is invertible in

Ψ0(G∂M).

Proof. Since πM0
is injective and πM0

C∗(GM0
) ∼= K(L2(M0)), we have the induced rep-

resentation π′ : Ψ0(G)/C∗(GM0
) → B(L2(M0))/K, which is also injective. Hence, P =

πM0
(Q) is Fredholm if, and only if the class of Q is invertible in Ψ0(G)/C∗(GM0

). The
result follows from (21). �

Moreover, the amenability of G yields that the restriction G∂M is also amenable [43]
Prop. 3.7). In this case, ρ := Πx∈∂Mπx is an injective representation of Ψ0(G∂M ) and
σ∂(P ), as above, is invertible if, and only if, σ∂(P )x = Qx is invertible for all x ∈ ∂M ,
with πM0

(Q) = P . (The same is true also for Ψ∞(G∂M), since if ρ(P ) = 0, then ρ(P (1 +
P ∗P )−1/2) = 0.)
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Elliptic operators P with invertible σ∂(P ) are sometimes called fully elliptic and the
algebra Ψ0(G∂M) is the so-called indicial algebra. If πM0

is not injective for some x ∈M0,
then we only have a sufficient condition for Fredholmness.
To finish this section, we prove a result that will later enable us to compute the index

of operators with order m > 0 from the index of order 0 operators.

Lemma 2.5. Let Q ∈ Ψm
V (M0;E) and P := Q(1 +Q∗Q)−1/2. Then P ∈ Ψ0

V(M0;E)

Proof. Let G be the canonical groupoid integrating (M,V). It follows from groupoid
calculus applied to Ψ0(G), more precisely from Theorem 7.2 in [34], that if L ∈ Ψ2m(G) is

such that L ≥ 1 and σ2m(L) > 0 then SL−1/2 ∈ Ψ0(G), for any S ∈ Ψm(G). From Theorem
2.3, let R ∈ Ψm(G) be such that πM0

(R) = Q, with πM0
the vector representation. Then

1 +Q∗Q = 1 + πM0
(R)∗πM0

(R) = πM0
(1 +R∗R)

and we can apply the result above to 1 +R∗R to obtain R(1 +R∗R)−1/2 ∈ Ψ0(G). Hence

πM0
(R(1 +R∗R)−1/2) ∈ ΨV

0(M0). It follows from the definitions that

πM0
((1 +R∗R)−1/2) = πM0

(1 +R∗R)−1/2,

so that P = Q(1 +Q∗Q)−1/2 ∈ Ψ0
V(M0). �

Note that if P and Q are as in the lemma above (Lemma 2.5), σm(Q) and σ0(P )
are homotopic as sections of S∗A. Moreover, if we define the map of restriction to the
boundary σ∂ : Ψm

V (M0;E) → Ψm(G∂M ; r∗E) given, as before, by σ∂(Q) := R∂(R), with
πM0

(R) = Q, then it follows from the proof that

σ∂(P ) = σ∂(Q(1 +Q∗Q)−1/2) = σ∂(Q)(1 + σ∂(Q)
∗σ∂(Q))

−1/2,

hence σ∂(P ) is invertible if, and only if, σ∂(Q) is. We say that Q ∈ Ψm
V (M0;E) is fully

elliptic if, and only if, P is. In that case, P is Fredholm and Q will also be Fredholm, in
the setting of unbounded operators, with ind(Q) = ind(P ) (see Section 3.1).

2.3. The asymptotically commutative case. In this subsection, we prove an index
formula for certain classes of pseudodifferential operators on Lie manifolds whose associ-
ated groupoids are such that the restrictions at the boundary yield bundles of commutative
Lie groups. The main point is giving conditions that yield commutativity of the algebra
Ψ0(G∂M), using the notation of the previous section, so that Fredholmness depends on
invertibility in an algebra of functions, thus reducing to the setting considered in Section
1.3. This is known to hold for the scattering and double-edge calculus [32, 33, 34, 36, 41].
The dimension of M is denoted by n, as before. Recall that in this section, we do not
assume n to be even.

Definition 2.6. Let (M,W) be a connected Lie manifold with Lie algebroid π : AW →M
with the property that any X ∈ W vanishes at the boundary ∂M (that is, on any face
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of the boundary) and the resulting Lie algebras AW ,x := π−1(x) are commutative. A
Lie manifold (M,W) with this property will be called an asymptotically commutative Lie
manifold, and W will be called commutative at infinity.

(We reserve the notation W for asymptotically commutative structural Lie algebras of
vector fields, whereas V will denote a general such structural Lie algebra of vector fields.)
Let (M,W) be an asymptotically commutative Lie manifold. Then a groupoid inte-

grating AW |∂M is AW |∂M itself (since the commutative Lie algebra Rn identifies with itself
via the exponential map). According to [38], there will be a unique Lie manifold structure
on the disjoint union

(23) G := (M0 ×M0) ∪ AW |∂M

such that G is a Lie groupoid integrating A = AW . Thus any Lie algebroid associated to
an asymptotically commutative Lie manifold has a canonical Lie groupoid integrating it.
Let A be the sphere bundle obtained by radial compactification of the fibres of A.

Proposition 2.7. Assume (M,W) is an asymptotically commutative Lie manifold and
let G be the canonical Lie algebroid integrating it, as in Equation (23). Then Ψ0(G∂M ) is
commutative and

Ψ0(G∂M) ∼= C(A|∂M).

Proof. It follows from (23) that the algebra of pseudodifferential operators on G∂M coin-
cides with Ψ0(A∂M), that is, with the algebra of continuous families of (Px) of translation
invariant pseudodifferential operators Px acting on the fibers (A∂M)x of A∂M , x ∈ ∂M .
Now, the pseudodifferential operators of order zero on a vector space V that are transla-

tion invariant coincide with convolution operators with functions whose Fourier transform
is in

S̃0(V ) = {p ∈ C∞(V ) : p(y, ξ) := p(ξ) ∈ S0(T ∗V )}

(symbols of order zero that are independent of y). The algebra of convolution operators
is commutative, so it follows straight away that Ψ0(A∂M) is commutative. (In particular,

the reduced and full C∗-norms coincide.) Moreover, one can check that S̃0(V ) ∼= C(V ),

with V the radial compactification of V . Hence, Ψ0(A∂M) ∼= C(A|∂M), since there is

a isomorphism between elements of Ψ0(A∂M ) and continuous families in S̃0(Ax), which

is bounded with respect to the reduced, hence the full, norm. This proves Ψ0(G∂)) ∼=
C(A|∂M), as claimed. �

Note that it follows from the proof that the isomorphism above is really given by the
total symbol, as in (4), of the indicial boundary operator. For order m > 0 operators,

we have Ψm(G∂M ) = Ψm(A|∂M) ∼= S̃m(A|∂M) ⊂ C∞(A|∂M), the isomorphism being again
given by the total symbol, that is, including the lower order terms of the symbol. (This
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total symbol is defined since the resulting operators on the fibers of A→ ∂M are transla-
tion invariant, and hence they are convolution operators. The total symbol is simply the
Fourier transform of the resulting convolution distributions.)
As in Section 1.3, Equation (13) consider Ω := ∂(A) = (S∗A)∪A|∂M such that C(Ω) =

{(f, g) ∈ C(S∗A)⊕ C(A|∂M), f = g on S∗A∂M}.
Define the boundary symbol for operators on (M,W) by

(24) σ∂ : Ψ0
W(M0;E) → C(A|∂M)

as the map of restriction to the boundary composed with the isomorphism given by the
previous proposition. For P ∈ Ψm

W(M0;E), the boundary symbol is just given by the total
symbol of R∂(Q) = Q|∂M ∈ Ψ0(A∂M), with R∂M : Ψm(G, r∗E) → Ψm(A∂M , r

∗E∂M) the
restriction map and πM0

(Q) = P .
Moreover, it follows from (21) that C(Ω) is the recipient of full symbols of pseudodif-

ferential operators on M , since C(A|∂M) ×C0(S∗A∂M ) C0(S
∗A) = C(∂A) = C(Ω). We have

then a map

(25) σfull := (σ0, σ∂) : Ψ0
W(M ;E) → C(Ω),

which is surjective, continuous and a ∗-algebra morphism. We will see in the next propo-

sition that K ⊂ ker σfull, so it follows that Ω = ∂(A) is a comparison space for Ψ0
W(M ;E)

(see Equation (14)), and hence the results from Section 1.3 apply.

Proposition 2.8. Assume (M,W) is an asymptotically commutative Lie manifold and let
G be the canonical Lie groupoid integrating it, as in Equation (23). Then πM0

is injective

on Ψ0(G), and hence the following sequence is exact.

(26) 0 −−−→ K(M ;E) −−−→ Ψ0
W(M ;E)

(σ∂ ,σ0)
−−−−→ C(Ω) −−−→ 0.

In particular, an operator P ∈ Ψ0
W(M ;E) is Fredholm if, and only if, it is fully elliptic,

meaning that σfull(P ) = (σ0(P ), σ∂(P )) ∈ C(Ω) is invertible.

Proof. The second part will follow from the first part using Proposition 2.4, so we con-
centrate on proving the injectivity of πM0

. Let I be the kernel of πM0
. We want to show

that I = {0}. We have that πM0
is injective on the subalgebra of compact operators of

Ψ0
W(M,E), so I ∩K = 0. It follows that (σ0, σ∂M) is injective on I, since it has kernel K.
Let P ∈ I ⊂ Ψ0

W(M,E). We can recover the principal symbol of P from its action
on M0 [2, 28, 34] so we can assume m < 0. By replacing P with a power of P ∗P , we
can assume that m < −n. The Fourier transform (as in Equation (18)) then allows us to
recover the boundary symbol of P since for x approaching the boundary, the exponential
map increases its radius of injectivity (so the cutoff χ will affect less and less the kernel

of the resulting operator). This shows that πM0
is injective on Ψ0(G). �
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In this case, let [σ0(P )] ∈ K0(TM0) denote the K0-theory class associated to P , as in
(16), and [σfull(P )] := [(σ∂(P ), σ0(P ))] ∈ K1(C(Ω)) ∼= K1(Ω) denote the class in K1. As
before, let Td(TCM) denote the Todd class of the complexified tangent bundle of M , and
π : T ∗M → M . Also, we denote by πΩ : Ω = ∂(A) → M the natural projection. From
Theorem 1.8 it finally follows:

Theorem 2.9. Let (M,W) be an asymptotically commutative Lie manifold manifold with

Lie algebroid A, Ω := ∂(A), and let P ∈ Ψ0
W(M ;E) be an elliptic operator with σ∂(P )

invertible in C(A∂M). Then,

ind(P ) = (−1)n ch0[σ̃full(P )]π
∗Td(TCM)[TM0] = (−1)n ch1[σfull(P )]π

∗
ΩTd(TCM)[Ω],

where [σ̃full(P )] ∈ K0(TM0) is defined using Lemma 1.7.

Our main example of an asymptotically commutative Lie manifold (M,W) is obtained
as follows. Let (M,V) be a Lie manifold and let xk be boundary defining functions of the
hyperfaces ofM . Choose ak ∈ N = {1, 2, . . .}. Then, as in the Equation (3), we introduce

W := fV, with f := Πxakk ,

is also a structural Lie algebra of vector fields, since it is closed for Lie brackets, and a
finitely generated, projective C∞(M)–module. Hence (M,W) is a Lie manifold that is
easily seen to be asymptotically commutative.
The previous result extends the known index formulas for the scattering calculus on

manifolds with boundary, where Vsc := xVb, with x is a boundary defining function and
Vb is the Lie algebra of vector fields tangent to the boundary, and for the double-edge
calculus, where Vde = xVe, with Ve the edge vector fields induced by a fibration of the
boundary [26, 30, 33, 36]. Moreover, the index formula above can be proved in the same
way considering families of pseudodifferential operators over a compact base space B
(the index now takes values in K0(B)) using a generalization of the Atiyah-Singer index
theorem for families of asymptotically multiplication operators. In this sense, Theorem
2.9 yields the result in [30] for families of scattering pseudodifferential operators.
In the next section, we will apply the index formula above to compute the index of

perturbed Dirac operators on general Lie manifolds.

3. Perturbed Dirac operators

Throughout this section, we let M0 be a non-compact, even dimensional manifold M0,
which, as before, is assumed to be the interior of a Lie manfold (M,V). We fix a set {xk}
of defining functions of M and let

(27) f := Πxakk , ak ∈ N,
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(so ak > 0). We consider in this section a Dirac operator /D coupled with a potential V ,
that is, an operator of the form

(28) T = /D + V := /D⊗̂1 + 1⊗̂V

on compactly supported sections of some vector bundles defined on M0. By a potential
we shall always mean an odd, self-adjoint endomorphism of a Z2-graded vector bundle
over M0. An operator T of this type with will be called a Callias-type operator. (More
precisely, T is the closure of T ⊗̂1 + 1⊗̂V .) We assume the potential V to be of the form

V := f−1V0 = Πx−ak
k V0,

where V0 extends to a smooth function on M , invertible at the boundary. In particular,
the potential V is unbounded.
We apply the results of the previous section to give a cohomological formula for the

index of T+ := (/D + V )+. The main point is to reduce the calculation of the index of T+

to the case of a Dirac operator coupled with a bounded potential on the asymptotically
commutative Lie manifold (M,W) defined by W := fV, and show that the index can be
obtained from Theorem 2.9. More precisely, we shall show that

(29) ind(T+) = ind(Q) for Q := f 1/2T+f 1/2 ∈ Ψ1
W(M ;F0, F1), W := fV,

for suitable vector bundles F0 and F1. We then use that

P := Q(1 +Q∗Q)−1/2 ∈ Ψ0
W(M ;F0, F1)

also satifies ind(P+) = ind(Q+). Finally, we show that ind(P+), and hence also ind(T+) =
ind(P+), can be computed using Theorem 2.9.

3.1. Dirac and Callias operators. Let W and E be Z2-graded vector bundles over M .
We endow W ⊗ E with the usual grading and denote by W ⊗̂E the resulting Z2-graded
vector bundle, namely,

(W ⊗̂E)+ = (W+ ⊗ E+)⊕ (W− ⊗E−) and (W ⊗̂E)− = (W− ⊗E+)⊕ (W+ ⊗E−).

If V ∈ End(E) is an endomorphism, then it acts on C∞(E) as a (pseudo)differential
operator of order 0.

Definition 3.1. An operator T : C∞
c (M0;W ⊗̂E) → C∞

c (M0;W ⊗̂E) is said to be a
Callias-type pseudodifferential operator on the Lie manifold (M,V) if

T := D + V := D⊗̂1 + 1⊗̂V.

where D ∈ Ψm
V (M,W ),m > 0, is an odd, symmetric, elliptic operator and V ∈ End(E|M0

)
is odd and self-adjoint and invertible outside a compact set. We refer to V as a potential.
We shall also assume our potential V to be invertible outside a compact subset ofM0. The
closure of an operator of the form T = D + V will also be called a Callias-type operator.
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When D is the (generalized) Dirac operator, these operators are also called Dirac-
Schrödinger operators and were first considered by Callias (in the odd dimensional Eu-
clidean space [16]). See also [14, 15, 23, 22] and references therein for more results on index
theory of Dirac-Schrödinger and Callias type operators on even-dimensional manifolds.

Remark 3.2. On odd dimensional manifolds, the Callias-type operators are of the form
/D + iV , where V is self-adjoint and invertible at infinity. See [5, 6, 12, 13, 16, 21, 30, 42]
for more on the index of Calias type operators in the odd-case.

Recall that a symmetric (hence closable) operator T is essentially self-adjoint if its
closure is self-adjoint, that is, if < Tx, y >=< x, Ty >, for all x, y ∈ D(T ) = D(T ∗). (We
shall always denote the minimal closure of an operator by the same letter.)
In the following lemma, we assume that the potential V0 extends to M , in particular,

it is bounded. (We will prove such a result for an unbounded potential in Section 3.4.)

Lemma 3.3. Let D ∈ Ψm
V (M,W ), m > 0, be an odd, symmetric, elliptic operator. As-

sume that V0 extends to a smooth function on M , as before, then the Callias-type operator
T = D+ V0 ∈ Ψm

V (M0;W ⊗E) is elliptic and essentially self-adjoint on C∞
c (M0;W ⊗E).

Proof. Ellipticity follows from σm(T ) = σm(D). The fact that T is essentially self-adjoint
follows, for instance, from [34] (Theorem 7.1) which yields that, with m > 0, a (possibly
unbounded) symmetric, elliptic operator in Ψm

V (M ;W ⊗ E) is essentially self-adjoint,
identifying Ψm

V (M ;W ⊗ E) = πM0
(Ψm(G; r∗(W ⊗ E))), as in Theorem 2.3. �

We shall work with unbounded Fredholm operators. It will then be useful to recall the
way they are introduced. Let T be a possibly unbounded operator with domain D(T ) and
codomain H . We shall always replace T by its closure, so assume T is closed and endow
D(T ) with the graph norm. Then T is Fredholm if, by definition, the induced bounded
operator T : D(T ) → H is Fredholm (in the usual sense of having finite dimensional kernel
and cokernel). In particular, a pseudodifferential operator T1 acting between sections of
E0 with range sections of E1 is Fredholm if, and only if, T2 := T1(1 + T ∗

1 T1)
−1/2 is a

Fredholm operator and, in this case, ind(T1) = ind(T2).
We are interested in computing the index of

(30) T+ = (D + V )+ : C∞
c (M0; (W ⊗̂E)+) → C∞

c (M0; (W ⊗̂E)−),

which we shall prove to be Fredholmness between suitable Sobolev spaces.
Note that, with respect to the grading, we can write

(31) T+ =

(
D+ ⊗ 1 −1 ⊗ V −

1⊗ V + D− ⊗ 1

)
.

Most of our results work for general odd, elliptic, positive pseudodifferential operators
D ∈ Ψm

V (M ;E). However, for simplicity and because this is the most useful case in
applications, we shall mainly be interested in the case when D is a generalized Dirac
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operator. Recall that, in any case, the Dirac operators generate all classes in K-homology,
so we can always assume D to be a Dirac operator.

3.2. Dirac operators on Lie manifolds. We introduce here generalized Dirac operators
on Lie manifolds following [3]. Let (M,V) be a even dimensional Lie manifold endowed
with a compatible metric g on M0 and let W be a Clifford module over M endowed with
an A∗-valued connection ∇W and a Clifford multiplication bundle map c : A⊗W → W .
Recall that a compatible metric on M0 is a metric on TM0 that extends to A→ M . The
restrictions of W , c, and ∇W to M0 reduce to the classical notions of a Clifford bundle
together with an admissible connection [25, 35, 36].

Definition 3.4. The generalized Dirac operator /D : C∞(M ;W ) → C∞(M ;W ) associated
to W is then defined as the composition

(32) C∞(M ;W )
∇W

−−−→ C∞(M ;W ⊗A∗)
id⊗φ
−−−→ C∞(M ;W ⊗A)

c
−−−→ C∞(M ;W ),

where φ : A∗ → A is the isomorphism given by the metric.

Since both the Clifford multiplication c and the A∗-valued connection are V-differential
operators, of order 0 and 1, respectively, we have that /D ∈ Diff1

V(M ;W ). The principal
symbol σ1(/D)ξ = ic(ξ) ∈ End(W ) is invertible for any ξ 6= 0, and hence /D is elliptic. It
follows from classical results that /D with domain C∞

c (M0;W ) ⊂ L2(M0;W ) is essentially
self-adjoint (i.e., its closure is self-adjoint), since M0 is complete.
We can also define Dirac operators on groupoids: if G is a d-connected groupoid inte-

grating A = A(V) then we can consider the Clifford module r∗W and endow G with an
admissible connection ∇G ∈ Diff(G;W,W ⊗ A∗) such that πM0

(/DG) = /D, where /DG is the
associated Dirac operator on G (see [34] for details).
Assume now that M is even-dimensional and W is Z2-graded, with the grading given

by the chirality operator. Let also E be an Hermitian Z2-graded vector bundle over M
and V ∈ End(E) a potential (so odd, self-adjoint). We are interested in computing the
index of

(33) T+ = (/D + V )+ : C∞
c (M0; (W ⊗E)+) → C∞

c (M0; (W ⊗̂E)−).

3.3. The case of bounded potentials. Let (M,W) be an asymptotically commutative
Lie manifold. Recall that in this section we assume that n, the dimension of M , is even.
Let

(34) Q := D + V0 with D ∈ Ψm
W(M0;E ⊗W ),

where D is an elliptic, symmetric, odd pseudodifferential operator, as in Definition 3.1.
Let V0 be a bounded potential on M0 that extends to a smooth function on M that is
invertible on ∂M (so, in particular, V0 is odd and symmetric). It follows from Lemma 3.3
that Q is elliptic and essentially self-adjoint on C∞

c (M0).
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We define the total symbol K-theory classes σfull(Q) ∈ K1(Ω) and σ̃full(Q) ∈ K0(TM0)
of Q in a similar way to the case of order zero symbols. First, recall that the boundary
symbol σ∂ : Ψm

W(M0;E) → C(A|∂M) is given by

σ∂(P ) = σtot
m (R∂(S)) = σtot

m (S|∂M),

with πM0
(S) = P , R∂ : Ψm(G) → Ψm(G∂M ) is restriction to the boundary and σtot

m (Sx),
x ∈ ∂M , is the total symbol of the operator Sx on Ax (including lower order terms).

Lemma 3.5. Let Q be as in Equation (34) and P := Q(1 + Q2)−1/2. Then P ∈

Ψ0
W(M0;W ⊗ E) is fully elliptic, in the sense that its principal symbol σ0(P ) and the

boundary symbol σ∂(P ), defined by continuity, are invertible.

Proof. It follows from Lemma 2.5 that P ∈ Ψ0
W(M0;W ⊗E). We have that P is elliptic,

since Q is. To understand the boundary operators, since W is commutative at the bound-
ary, hence G∂M = A∂M is amenable, we only need invertibility on fibres Gx = Ax, x ∈ ∂M
(see the remark after Theorem 2.4). Let S ∈ Ψm(G; r∗W ) be such that πM0

(S) = D.
Therefore, we need to look at the symbol of the operators Sx coupled with the constant
potential V0(x) acting on the fiber Ax, for each x ∈ ∂M . The invertibility of the boundary
indicial operator σ∂(D + V0)x(ξ) = σtot(Sx)⊗̂1 + 1⊗̂V0(x), ξ ∈ Ax then follows from the
fact that V0(x) is invertible for each x ∈ ∂M (noting that α⊗̂1 + 1⊗̂β ∈ End(Wx⊗̂Ex) is
invertible if α or β are invertible.) �

Note that when D = /D is a Dirac operator on (M,W) then, using the notation as
above, Sx = /Dx is a Dirac operator on Ax and σ∂(/D+ V )x(ξ) = ic(ξ)⊗̂1+ 1⊗̂V0(x). (This
is due to the fact that the restriction of a Dirac operator to the boundary is again a Dirac
operator [34].)
The following lemma provides the definitions of the total symbol K-theory classes

σfull(Q) ∈ K1(Ω) and σ̃full(Q) ∈ K0(TM0). Let us introduce the K-theory class [V0]
defined by the endomorphism V0 as usual [7, 29]

[V0] := [E+, E−, V0] ∈ K0(M0) = K0(M ; ∂M) ⊂ K0(M).

Recall that Ω := ∂(A) = (S∗A) ∪ A|∂M (as in Subsection 2.3).

Lemma 3.6. Let Q and P be as in Lemma 3.5 and define [σfull(Q)] := [σfull(P )] ∈ K1(Ω)
and [σ̃full(Q)] := [σ̃full(P )] ∈ K0(TM0). Then

∂[σfull(Q)] = [σ̃full(Q)]

and [σ̃full(Q)] can be represented by the endomorphism σm(D)⊗̂1 + 1⊗̂V0. In particular,

[σ̃full(Q)] = [σm(D)]⊗ π∗[V0],

where [σm(D)] ∈ K0(TM) and [V0] ∈ K0(M, ∂M) are the classes defined by the corre-
sponding morphisms and π : TM → M is the natural projection.
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Proof. The relation ∂[σfull(Q)] = [σ̃full(Q)] follows from definitions and from Lemma 1.7.
Let us choose a smooth function σm ∈ Sm(A∗) such that σm represents σm(D) and on
A∗|∂M it is equal to the total symbol ofD. Let then p = σm⊗̂1+1⊗̂V0 ∈ C∞(A∗) = C∞(A),
where we have used a fixed metric on A to identify A with A∗, as before. From Equation
(31) we have that

σ0(P ) = σm(Q)/
√
1 + σm(Q)2 = σm(D)/

√
1 + σm(D)2 = p/

√
1 + p2 ∈ S0(A∗)/S−1(A∗).

On the other hand, at the boundary, we have

σ∂(P ) = σ∂(Q)/
√

1 + σ∂(Q)2 = p/
√

1 + p2.

Therefore, σfull(P ) = p/
√
1 + p2 on Ω. Hence the K-theory class [σ̃full(P )] is obtained

from the endomorphism p/
√
1 + p2 defined on TM0, which obviously extends p/

√
1 + p2

from Ω to the whole of A ⊃ TM0. We obtain that the endomorphism p, and hence also
σm(D)⊗̂1 + 1⊗̂V0, represents [σ̃full(Q)].
From the definition of tensor product in K-theory we have that

[σm(D)]⊗ π∗[V0] = [π∗(W ⊗̂E)+, π∗(W ⊗̂E)−, σm(D)⊗̂1⊕ 1⊗̂V0]

where

σm(D)⊗̂1⊕ 1⊗̂V0 =

(
σm(D

+)⊗ 1 −1⊗ V −
0

1⊗ V +
0 σm(D

−)⊗ 1

)
.

It follows that the K-theory class [σ̃full(Q)], where Q = D⊗̂1 + 1⊗̂V0, is represented by
the same morphism as [σm(D)]⊗ π∗[V0]. So these two classes are equal. �

We shall need the Sobolev spaces Hm
W(M0) defined by W (more precisely by the metric

determined by W [1, 2]).

(35) Hm
W(M0) := {u ∈ L2(M), Du ∈ L2(M0) for all D ∈ Diffm

W(M0)}.

The space Hm
W(M0) is the domain of any elliptic pseudodifferential operator in Ψm

W(M0),
m > 0, acting on L2(M0). For m < 0 we use duality.
We now show that ind(Q+) can be computed using Theorem 2.9.

Theorem 3.7. Let Q = D + V0 be a Callias-type pseudodifferential operator with a
bounded potential V0 as in Lemmas 3.5 and 3.6. In particular, we assume that V0 is a
smooth potential on M that is invertible on ∂M . Then Q+ is Fredholm and

ind(Q+) = ch0[σ̃full(Q
+)]π∗Td(TCM)[TM0] = ch1[σfull(Q

+)]π∗
ΩTd(TCM)[Ω]

= ch0[σm(D
+)] ch0 π

∗[V0]π
∗Td(TCM)[TM0].
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Proof. Let P := Q(1 + Q∗Q)−1/2, as before. Then P ∈ Ψ0
W(M0;W ⊗E) is fully elliptic,

by the previous lemma (Lemma 3.5). Hence P is Fredholm by Proposition 2.4.

ind(Q+) = ind(P+)

= ch0[σ̃full(P
+)]0Td(TCM0)[TM0] = ch1[σfull(P

+)]π∗Td(TC)[Ω]

= ch0[σ̃full(Q
+)]Td(TCM0)[TM0] = ch1[σfull(Q

+)]Td(TC)[Ω],

= ch0[σm(D
+)] ch0 π

∗[V0]π
∗Td(TCM)[TM0].

by Theorem 2.9 applied to P+ and Lemma 3.6. �

We are mainly interested in the case when

(36) Q = /D + V0 := /D⊗̂1 + 1⊗̂V0,

where /D is a Dirac operator acting on the sections of some Clifford bundle W . As before,
we assume V0 is potential (i.e., an odd, self-adjoint, endomorphism of a Z2-graded bundle
E) that is invertible outside a compact subset of M0 such that V0 extends smoothly to
M , to be invertible at ∂M . In particular Q ∈ Ψ1

W(M0;W ⊗E).
To get an even more explicit formula for the index of coupled Dirac operators /D + V0,

let us now that M has a spinc-structure, with canonical spinc-bunde S and associated
Dirac operator /DS. In particular, M is oriented, and we let [M ] ∈ Hn(M, ∂M) denote
its fundamental class. Let W = S⊗̂F , with F a complex vector bundle over M . Then
/DF := /DS ⊗ F is the Dirac operator twisted with F .

Corollary 3.8. Let /DF be the Dirac operator twisted with F and Q = /DF + V0 be the
perturbed twisted Dirac operator associated to V0, where V0 is a bounded potential invert-
ible at ∂M on an asymptotically commutative spinc Lie manifold (M,W). Then Q+ is
Fredholm and

ind(Q+) = Â(M) ch0([F ⊗ V0])[M ].

Proof. It is known classically that

p! ch0(σ(/D
+
F ))Td(TCM) = Â(M) ch0[F ],

where p! is integration over the fibre and Â(M) ∈ H∗(M) is the Â-genus of M (see [35]).
The result then follows right away from Theorem 3.7. �

3.4. The case of unbounded potentials. In this subsection, we are back to a general
(even-dimensional) Lie manifold (M,V). Let

(37) T := /D + V := /D⊗̂1 + 1⊗̂V,

where /D ∈ Diff1
V(M0;W ) is a Dirac operator associated to V. We will consider here

unbounded potentials, in that we assume moreover that, on M0,

(38) V = f−1V0, f := Πxakk ,
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where V0 is bounded and it extends to a smooth function on M that is invertible on
∂M (at infinity) and xk are boundary defining functions of the hyperfaces of M with
ak ∈ N = {1, 2, . . .}. This section contains the hard analysis needed for our main result.
Our first goal is to show that T is essentially self-adjoint with domain a suitable weighted

Sobolev space. We want to prove a formula for the index of T+ = (/D+V )+. Our strategy
is to reduce this problem to a question on operators with bounded potential by writing

(39) T = f−1/2Qf−1/2, with Q := f 1/2/Df 1/2 + V0.

In fact, let W := fV and let g be the given metric compatible with V. Then g0 := f−2g
is a metric compatible with W and hence

/DW := f 1/2/Df 1/2

is the Dirac operator associated to the Lie manifold structure defined by W and metric
g0 [11, 10, 27, 35, 37]. Actually, to identify /DW with f 1/2/Df 1/2, we need to rescale the
volume forms also, a fact that we ignore throughout, in order to simplify the notation.
We then have that Q ∈ Diff1

W(M ;W ⊗ E) is a Callias-type Dirac operator on (M,W)
with a bounded, invertible potential. In particular, it is elliptic and essentially self-adjoint
on C∞

c (M0). As before, we still denote its self-adjoint closure by Q.
We now define weighted Sobolev spaces defined by W

(40) Km
a (M0) := faHm

W(M0),

where a ∈ R and f =
∏
xakk , as before. If E → M is a smooth vector bundle,

then the spaces Km
a (M0;E) are defined similarly. We remark that all the weighted

Sobolev spaces used below are with respect to W. (One can check that Km
a (M0;E;V) =

Km
a−n/2(M0;E;W).) We have the following elliptic regularity result from [1].

Theorem 3.9. Assume that Q0 ∈ Ψk
W(M0;E) is elliptic and h ∈ Ks

a(M0;E) is such that
Q0h ∈ Km−k

a (M0;E). Then h ∈ Km
a (M0;E).

Applying this result to Q = f 1/2Tf 1/2 = /DW + V0 we obtain the following.

Lemma 3.10. Let h ∈ Ks
a(M0;E) be such that Th ∈ Km−1

a−1 (M0;E). Then h ∈ Km
a (M0;E).

We shall also need the following lemma. Before, we remark that it follows from
the definitions that multiplication by f s defines an isomorphism f s : Km

a (M0;E0) →
Km

a+s(M0;E0), for any a, s. In particular, if P ∈ Ψk
W(M0), with P : Hm

W(M0;E0) →

Hm−k
W (M0;E0), then f

sPf−s : Km
s (M0;E0) → Km−k

s (M0;E0) is Fredholm if, and only if,
P is. Moreover, it is known that f sΨk

W(M0;E0)f
−s = Ψk

W(M0;E0) (Proposition 4.3 [1]),
so any such P is also defined as an operator, still denoted by P ,

P : Km
s (M0;E0) → Km−k

s (M0;E0),

for any s.
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Lemma 3.11. Let Q0 ∈ Ψk
W(M0;E0), k ∈ Z+, be a fully elliptic. Then

Qa,b,c := f bQ0f
c : Km

a (M0;E0) → Km−k
a+b+c(M0;E0)

is Fredholm and its index is independent of m, a, b, and c, in the sense that

ind(Qa,b,c) = ind(Q0,0,0).

Proof. Let us notice first that Q0,0,0 is Fredholm due to Proposition 2.8 (since we assumed
Q0 to be fully elliptic). It follows that f sQ0,0,0f

−s : Km
s (M0;E0) → Km−k

s (M0;E0) is also
Fredholm and ind(f sQ0,0,0f

−s) = ind(Q0,0,0). Note also that Qa,b,c is indeed well-defined,
by the remarks above. Write Qa = Qa,0,0.
Next, we notice that f sPf−s − P = f s(Pf−s − f−sP ) ∈ fΨk−1

W (M0;E0) for any
P ∈ Ψk

W(M0;E0) by the specific form of the Lie algebra of vector fields W = fV. More-
over f sQa−sf

−s − Qa : Km
a (M0;E0) → Km−k

a (M0;E0) is compact, since fKm
a (M0;E0) →

Km−k
a (M0;E0) is compact by [2]. With s = a, we conclude that Qa is Fredholm and also

that Qa and f sQa−sf
−s have the same index for any s.

If follows that the index of Qa : K
m
a (M0;E0) → Km−k

a (M0;E0) is independent of a. Us-
ing this with a replaced by a+ c and using the fact that f s : Km

a (M0;E0) → Km
a+s(M0;E0)

is an isomorphism, we obtain the desired result. �

We shall use this lemma to prove the following crucial result.

Proposition 3.12. The operators

T ± iI = /D + V ± iI : K1
1(M0;W ⊗ E) → K0

0(M0;W ⊗E) = L2(M0;W ⊗ E)

are invertible, and hence T is essentially self-adjoint with domain K1
1(M0;W ⊗E), where

all the L2 and Sobolev spaces are associated to W.

Proof. Let us denote by

Qa := f 1/2Tf 1/2 = /DW + V0 : K
1/2
a (M0;W ⊗E) → K−1/2

a (M0;W ⊗E).

Then Q0 is fully elliptic (by Lemma 3.5 and the fact that /DW is the Dirac operator
associated to W = fV), and hence it is Fredholm. It follows from Lemma 3.11 that Qa

is Fredholm for any a and that its index is independent of a. Since Q∗
0 = Q0, we have

ind(Qa) = 0 for all a. Hence

ind(Qa + λf) = ind(Qa) = 0,

since multiplication by f is a compact operator K
1/2
a (M0;W ⊗ E) → K

−1/2
a (M0;W ⊗ E)

by [2]. Then

(41) T ± iI = f−1/2(Qa ± if)f−1/2 : K
1/2
1/2(M0;W ⊗E) → K

−1/2
1/2 (M0;W ⊗ E)

is also Fredholm of index zero.
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We recall that Km
a (M0;W ⊗ E) is the dual of K−m

−a (M0;W ⊗ E), with the duality
pairing being obtained from the L2-inner product by continuous extension. Then the
“L2-estimate”

((T ± i)u, u) = (Tu, u)± i(u, u)

and (Tu, u) ∈ R (since T is symmetric between the indicated spaces in Equation (41))
show that T ± iI are injective for a = 0. Since they have index zero, they induce
isomorphisms

(42) T ± iI : K
m+1/2
a+1/2 (M0;W ⊗E) → K

m−1/2
a−1/2 (M0;W ⊗ E)

for a = 0 and m = 0.
Now for an arbitrary a, the induced operator will still have index zero (by Lemma 3.11).

Since for a ≥ 0 it will still be injective, it follows that it will be an isomorphism for all
a ≥ 0. Since for a < 0 the resulting map is dual to the one for −a, we obtain that T ± iI
of Equation (42) are isomorphisms for all a and m = 0. We can extend this isomorphism
to any m ≥ by elliptic regularity (Lemma 3.10) and this completes the proof by taking
a = m = 1/2. �

We shall extend T to a self-adjoint operator denoted by the same letter. We are ready
now to compute the index of

T+ = (/D + V )+ : K1
1(M0; (W ⊗̂E)+) → K0

0(M0; (W ⊗̂E)−),

where /D is the Dirac operator on the (arbitrary) even dimensional Lie manifold (M0,V)
and V = f−1V0 is an unbounded potential as in (38). Let π : TM → M and πΩ : Ω =
∂AV →M be the natural projections and Td(TCM) be the Todd class of the complexified
tangent bundle of M .

Theorem 3.13. The operator T+ = (/D + V )+ is Fredholm and its index is given by

ind(T+) = ch0[σ̃full(T
+)]π∗Td(TCM)[TM0] = ch1[σfull(T

+)]π∗
ΩTd(TCM)[Ω]

= ch0[σ1(/D
+)] ch0 π

∗[V0]π
∗Td(TCM)[TM0].

Proof. Let Q1 = T+f , where f =
∏
xakk as above and is regarded as a multiplication

operator. Then Q1 = f−1/2Q+f 1/2, where

Q+ := f 1/2T+f 1/2 = (/DW + V0)
+ : K1

0(M0; (W ⊗̂E)+) → K0
0(M0; (W ⊗̂E)−)

is fully elliptic (by Theorem 3.7 and the fact that /DW is the Dirac operator associated to
W := fV). Then the operators Q1 and Q+ have the same index, by Lemma 3.11. By
ellipticity,

(1 +Q∗
1Q1)

1/2 : K1
0(M0; (W ⊗̂E)+) → L2(M0; (W ⊗̂E)+)
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is an isomorphism since the domain of any elliptic operator P ∈ Ψm
W(M ;E) is Hm

W(M0, E).
Therefore f(1 + Q∗

1Q1)
−1/2 : L2(M0; (W ⊗̂E)+) → K1

1(M0; (W ⊗̂E)+) is an isomorphism
as well. Proposition 3.12 then yields that T+ : K1

1(M0) → L2(M0) has the same index as

T+f(1 +Q∗
1Q1)

−1/2 = Q1(1 +Q∗
1Q1)

−1/2 : L2(M0; (W ⊗̂E)+) → L2(M0; (W ⊗̂E)−),

and, in particular, they are both Fredholm.
We have thus obtained that the operator T+ = (/D+V )+ is Fredholm and has the same

index as Q+ := f 1/2T+f 1/2. Moreover, the principal symbols of T+ and Q+ define the
same K-theory classes, by homotopy invariance, as do the symbols of /D and /DW , and
hence

ind(T+) = ind(Q+) = ch0[σ(Q
+)]π∗Td(TCM)[TM0] = ch1[σ(Q

+)]π∗
ΩTd(TCM)[Ω]

= ch0[σ(T
+)]π∗Td(TCM)[TM0] = ch1[σ(T

+)]π∗
ΩTd(TCM)[Ω]

= ch0[σ(/D
+)] ch0 π

∗[V0]π
∗Td(TCM)[TM0],

by Theorem 3.7 applied to Q+ and homotopy invariance. �

We also obtain the following more explicit calculation similar to Corollary 3.8.

Corollary 3.14. Let /DF be the Dirac operator twisted with F and T = /DF + V be the
perturbed twisted Dirac operator associated to V = f−1V0, where V0 is a bounded potential
on M invertible at ∂M for a spinc Lie manifold (M,V). Then T+ is Fredholm and, using
the notation of Corollary 3.14

ind(T+) = Â(M) ch0([F ⊗ V0])[M ] = Â(M) ch0([F ⊗ V ])[M ].
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